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Abstract 

This project has included development of methods that utilize 2-D and 3-D imagery (e.g., 
from visual, FLIR, LADAR, acoustic) to enable aerial vehicles to autonomously detect 
and prosecute targets in uncertain complex 3-D adversarial environments, including 
capabilities and approaches inspired by those found in nature, and without relying upon 
highly accurate 3-D models of the environment. The new capabilities of autonomous 
sensing and control enable UAV/munition operations: in a clandestine/covert manner; in 
close proximity to hazards, structures, and/or terrain; and in uncertain/adversarial 3-D 
environments. This project is a Multidisciplinary University Research Initiative (MURI). 
The critical technical innovations we are bringing to bear on the problem include: 

1. Knowledge-based segmentation; 
2. Adaptation and estimation in geometric active contours; 
3. Adaptive control frameworks for active vision systems; 
4. Multigrid and polygonal methods for optical flow; 
5. Imaging sensors designed to produce sensor information for control. 

Furthermore, the team performed a productive flying testbed activity as part of the 
program. This ensures that the methods are sound in the sense that they are: (1) 
implementable in real-time, (2) capable of practical use in the field, and (3) based on 
realistic/achievable sensor capabilities. 

Final Status of Effort 

Our team has completed the five years of this MURI along with a small part of the effort 
that continued on a contract extension for an additional six months. During that time, our 
first major focus was the generalized visual tracking problem, that is, the tracking of 
objects/features based on real-time imagery. Successful tracking allows for the 
utilization of visual information of an airborne target in the feedback loop for the 
purposes of pursuit, evasion, or formation flight. Utilization for a ground target, our 
second focus, enables automated pursuit/surveillance. When 2-D vision sensors are used, 
estimating target range is challenging - and a number of approaches have been studied, 
including utilization of target size/shape in the image, optimal guidance policies, and use 
of adaptation. In the third year, vision-based formation flight between two aircraft was 
successfully accomplished. Subsequently, experimental work moved to more complex 
formation flight scenarios with the objective of vision-based pursuit utilizing vision 
sensors only. In addition, several results involving visual tracking of a ground target 
have been produced - our second major focus. In addition, progress was made on a third 
(related) focus, the fixed object detection problem. The issues are similar (e.g. the 
difficulty of estimating range), as are the methods we are exploring to tackle the problem. 
There have been extensive interactions with AFRL/MNGN in support of related activities 
there. This report covers the entire project. The section that immediately follows covers 
background material. This is followed by a description of the methods developed under 
the project and then flight testing results. 
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To summarize what was accomplished in terms of major flight testing events, with links 
to videos: 

1. Vision-only formation flight and pursuit 
1.1. Helicopter maintaining formation with an airplane, vision-data only 

http://uav.ae.gatech.edu/videos/etP60615dl_firstVisionBasedFonTiation.mpg 
http://uav.ae.aatech.edu/videos/eiU60615dlob FirstVisionBasedFormation.mpg 

1.2. Airplane maintaining formation with an airplane, vision-data only 
http://uav.ae.gatech.edu/videos/ev070730b2 visionBasedFormation.wmv 
http://uav.ae.gatech.edu/videos/ev070730b2ob visionBasedFormation.wmv 

2. Vision-based ground vehicle tracking/following 
2.1. Following a truck based on camera image only 

http://uav.ae.gatech.edu/videos/f061113b 1  goodCarTrack.wmv 
http://uav.ae.gatech.edu/videos/tT)61113blob goodCarTrack.wmv 

3. Vision-based obstacle avoidance 
3.1. Vision-data only to avoid a fixed obstacle 

hup:  uav.ae.gatech.edu/videos/fu71030a2 auto Avoid l.wmv 
http://uav.ae.gatech.edu/videos/f071030a2ob autoAvoid 1.wmv 

It is worth noting that these flight testing activities utilized the advanced methods 
developed under this effort, including geometric active contours, particle filtering, neural 
network augmentation of an extended Kalman filter, and others as noted in this report. 

Note: References to other work are given numerically, and listed in the references 
section. References listed by Author and year are publications derived from this effort, 
listed in the Publications list. The publications list also includes publications not directly 
referred to in this report. 
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Background 

Vision and Control 

Prior to the effort, we had been working on problems in image processing and computer 
vision using geometry-based differential equations, invariant theory, and statistical 
methods for various purposes including segmentation, edge detection, image 
enhancement, de-noising, registration, surface warping, morphology, stereo, optical flow, 
shape representation and object recognition [1]. 

Boundary Based Tracking Using PDEs and Active Contours 

Tracking by active contours (also known as snakes) was an established method in 
controlled active vision. In 2-D images, virtual forces derived from the images drive a 
parametrically defined line with constraints on how it can deform. Such a virtual force 
can, for example, be derived from the local edge strength. The parametric line, or the so- 
called snake, is then attracted to the edges of the images, forming an outline of the object 
at hand. The modern approach to active contours is based on a more rigorous 
mathematical framework. Snake-based tracking using mean curvature evolution schemes 
can be a powerful tool in real-time tracking, segmentation and target recognition [2]. 

Active contours, or snakes, are autonomous processes that employ image coherence in 
order to track features of interest over time. In the past few years, a number.of 
approaches have been proposed. The underlying principle in these approaches are based 
upon the utilization of deformable contours that conform to various object shapes and 
motions. Snakes have been used for edge and curve detection, segmentation, shape 
modeling, and especially for visual tracking. We have developed and extended a 
deformable contour model that is derived from a generalization of the curve shortening 
evolution. It is based on the geometric intuition of multiplying the Euclidean arc-length 
by a function tailored to the features of interest to which we want to flow, and then 
computing the resulting gradient flow equations. This leads to interesting new models 
that efficiently attract the given active contour to the desired feature. The methods 
generalize naturally to 3-D or 4-D. The resulting active contour models have the ability 
to change topology (automatic merging and breaking of contours), essential to tracking 
multiple objects and tracking in clutter. Figure 1 illustrates the process of "bubbles" 
(expanding deformable contours) finding a truck in an image. 
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Figure 1: Active contour bubbles capturing a truck in an image; note the automatic 
merging and topological changes involved in finding the image. 

Knowledge-Based Segmentation 

In knowledge-based segmentation, these tracking approaches are augmented with 
knowledge of object shape to guide segmentation in uncertain regions. A natural way of 
doing this which combines the statistical and curvature driven approaches is to smooth 
the posterior probabilities and then extract a maximal a posteriori (MAP) classification in 
segmenting the given image. More precisely in the Bayesian framework, we can 
calculate the posteriors PCi = Pr(Q = c|V; = v) (the C's are the possible classes and the V's 
the intensities) and smooth by evolving Pc according to the affine geometric heat flow 
equation, under which the level sets of Pc undergo affine curve shortening whilst 
preserving edges [3,4]. Shape information may be introduced into the image 
segmentation process using this geometric variational framework. The idea is to 
introduce a representation for shapes and define a probability distribution over the 
variances of a set of "training images". Then, in order to segment a structure from an 
image, one can evolve a geometric active contour using local information and globally to 
a maximum a posterior estimate of shape. 

Adaptive Learning, Noise Models, and Geometric Active Contours 

A key element in our approach is to advance our algorithmic research on PDEs and active 
contours. At the same time, we want to supplement the statistical methods discussed 
above with techniques that leverage anatomical knowledge, primarily the PDE and level 
set methods. So far, we have only considered simple prior distributions and adaptation 
techniques. At present, the weighting factor is derived locally, based on edge 
computations. A more flexible conformal metric will be obtained if the metric is learned 
from the data and if the model incorporates non-local information. For this purpose, we 
will explore the use of adaptive filtering. We also plan to incorporate Bayesian statistics 
into the stopping (conformal weighting) rule in the geometric active contour model. The 
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classical snake cost-function is based on the minimization of length in the plane or of 
surface area in space. We will implement alternative cost terms that will be based on the 
minimization of other natural geometric quantities (such as area in the plane or volume in 
space) [5]. We also consider methods for explicitly coupling boundary and region data 
within the geometric active contour framework [6-9]. We plan to extend the techniques 
based on the concept of minimum description length (MDL). The idea is to consider the 
segmentation problem as a partitioning problem, where the criterion for choosing one 
partition instead of another is the description length. The measure of the description 
length must be accomplished according to some a priori language. Thus, it is essentially 
equivalent to the maximum a posteriori (MAP) estimate from the Bayesian paradigm. It 
may be regarded as an information interpretation of this classical method. 

Robust Tracking of Deforming Targets 

Earlier [10], we proposed a framework that allows us to separate the overall motion from 
the more general deformation. We have also extended this framework to handle 
occlusions, as a particular type of deformation [11]. The key idea underlying our 
framework is that the notion of motion throughout a deformation is very tightly coupled 
with the notion of shape average. In particular, if a deforming object is recognized as 
moving, there must be an underlying object (which will turn out to be the shape average) 
moving with the same motion, from which the original object can be obtained with 
minimum deformations. Therefore, we will model a general deformation as the 
composition of a group action g on a particular object, on top of which a local 
deformation is applied. The shape average is defined as the one that minimizes such 
deformations. The goal is, given a collection of images that contain a given target, to 
estimate both its motion (a finite-dimensional group) and its average shape. Some of our 
prior work was used as a starting point for studying these issues; see in particular [10-12]. 

Adaptive Estimation and Control 

Nonlinear Estimation and Adaptive Control: Existing methods for nonlinear state 
estimation impose assumptions that severely limit their domain of applicability, such as 
to systems that are linear with respect to unknown parameters, or systems that can be 
transformed to output feedback form. Neural network (NN) based adaptive observers 
have relaxed some of these assumptions; however robustness to unmodeled dynamics and 
disturbances has not been addressed. We have recently developed a methodology for 
adaptive state estimation of bounded nonlinear processes. The approach augments an 
existing linear observer with two NNs that model the uncertainties from a finite history of 
available measurements [13]. This approach is adaptive to both unmodeled 
nonlinearities and unmodeled dynamics, precisely the situation commonly encountered in 
image processing applications. 

Adaptive Guidance and Flight Control: Here, we explore direct utilization of vision data 
in guidance and flight control. We are approaching this topic from the perspective of 
using only vision data to analyze the environment in which the vehicle must be flown, 
and to pursue targets within this environment. The use of NN based adaptive control for 
flight control has been extensively developed and applied by our group [14-16]. We have 
also initiated several collaborative efforts at Eglin AFB in the area of cooperative flight 
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control and adaptive missile autopilot design. The research aspects particular to guidance 
and flight control that are new to this effort will involve those aspects associated with 
pursuing a target in a highly congested/adversarial environment. We envision a space in 
which a vehicle must be flown so as to detect and pursue a target while avoiding both 
fixed obstacles and moving threats. Adaptation is required in order to capture the 
unknown and unmodeled dynamics associated with moving targets and threats in the 
presence of wind/gust disturbances [17]. 

Sensor Design 

We believe that real-time control of autonomous airborne vehicles can be enhanced by 
image sensor information that is at the same time rich and selective. "Richness" 
quantifies the amount of information (in the Shannon sense) transferred through the 
sensor. "Selectivity" refers to the ability to discriminate the information that is most 
relevant to the mission (e.g., the location and distribution of targets on the ground) from 
irrelevant information (e.g., the grass on the ground). To meet this challenge, we will 
develop novel types of optical imaging sensors uniquely meeting two objectives: (i) the 
sensors will be optimized in terms of information quantity and quality (ii) the sensor 
outputs will be optimized to serve as input to the active vision control algorithms. 
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Accomplishments 

Dynamic Active Contours 

Active contours (also known as snakes) are autonomous processes employing image 
coherence in order to track features of interest over time. They are capable of 
conforming to objects in the image plane, making them ideal for segmentation, edge 
detection, shape modeling, and visual tracking. To overcome the local nature of active 
contours, statistical and adaptive based pre-processing can be integrated into the stopping 
criterion, the inflation mapping, and/or the gains to more effectively drive the contour to 
the desired minima. The ability of the snakes to change topology and quickly capture 
desired features makes them an indispensable tool for our visual tracking algorithms. In 
knowledge-based segmentation, the ability to track targets is enhanced through 
knowledge of image content for simplification and noise removal. Object shape can also 
be incorporated to improve targeting of desired objects and reduce false-positives. A 
natural way to incorporate knowledge-based techniques in an adaptive framework is to 
use maximum a posteriori (MAP) classification for segmentation of an image. An 
example of how the MAP algorithm can reduce irrelevant image content for improved 
segmentation and, in the process, provide an unambiguous minima to the active contour 
is shown in Figure 2. 

(a) Original (b) Segmented (c) Active contour encircling object 
Figure 2: Sample image processing with background clutter 

The generalized tracking problem necessarily involves acquiring visual feedback from a 
dynamically changing external world. Although the algorithms discussed above perform 
well, they were initially developed for solve static problems. We seek to implement the 
dynamic version of geometric active contours for improved robustness to background 
noise and obstacles within the tracking context. Also, the MAP classification technique 
for knowledge-based segmentation of imagery relies on certain fixed assumptions, such 
as a static number of classes to segment the image into. However, as the nature of the 
terrain and the sky vary, so can the number of classes. We have also investigated 
methods to dynamically adjust the number of classes. Doing so reduces the probability 
of losing a tracked target in the segmentation process. 

Particle Filtering for Geometric Active Contours 

Although the algorithms discussed above perform well, they were initially developed for 
solve static problems. We have implemented the dynamic versions of geometric active 
contours for improved robustness to background noise and obstacles within the tracking 
context. Tracking algorithms using Kalman filters or particle filters have been proposed 
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for finite dimensional representations of shape, but these are dependent on the chosen 
parameterization and cannot handle changes in curve topology. Geometric active 
contours provide a framework which is parameterization independent and allow for 
changes in topology. We formulated a particle filtering algorithm in the geometric active 
contour framework that can be used for tracking moving and deforming objects [Ha, 
Johnson, Tannenbaum 2008]. To the best of our knowledge, this is the first attempt to 
implement an approximate particle filtering algorithm for tracking on a (theoretically) 
infinite dimensional state space. 

In Figure 2, we track a van moving amid clutter in the background. There is sudden and 
large motion of the van (in some cases, the van moves more than 20 pixels between 
consecutive frames) due to jitter in the camera motion. Furthermore, it gets largely 
occluded (only a small fraction of the van is visible) many times by buildings or trees. 
Tracking such a sequence using active contours alone is bound to fail since the van may 
lie outside the basin of attraction of the starting contour. As shown in Figure 2, the 
proposed method tracks the van successfully despite large motion and occlusion. For this 
test sequence, no motion model was adapted, i.e., the state transition assumed known 
with Gaussian noise. The figure shows tracking results with 50 particles. 

Figure 2: Tracking van sequence through occlusions by adding a particle filter, note van 
going partially behind tree. Segmentation shown with red curve. 

The video sequence sampled in Figure 3 has a very low contrast and in general, it is very 
difficult to locate the boundary of the airborne target. The motion of the airplane from 
one frame to the other is also quite large, hence traditional active contour based methods 
fail to track the plane. In this experiment, only translational motion was assumed for the 
moving airplane. Figure 3 shows a few frames of the tracking results. Even though, no 
scale parameter was included in the motion model, the contour deformation part of the 
algorithm adjusts for this change in size of the plane (see the first and last frame). Other 
types of affine changes in the shape are also taken care of within the proposed framework 
without having to explicitly model them. Tracking results were obtained with just 30 
particles. 

Figure 3: Tracking low-contrast rapid airplane motion. Segmentation shown with black 
curve. 

We described a fast implementation of the algorithm which greatly improves the 
computational time of the segmentation process [Ha, Johnson, Tannenbaum 2008]. We 
have tested particle filtering using this fast active contour model, and the filtering 
algorithm has shown the ability to robustly track an aerial target under varied conditions, 
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Figures 4, 5, and 6. The computational speed of the algorithm has allowed us to employ 
it for formation flight among several unmanned aircraft, described further below in the 
flight test results section. We have also demonstrated the utility of the filtering algorithm 
for multiple target tracking in the presence of occlusions. 

Figure 4: Tracking aerial targets against clutter using particle filtering, horizontal and 
vertical distributions of target location probability density shown on edges. 

Figure 5: Tracking multiple aerial targets using particle filtering. 

Figure 6: Tracking two occluding aerial targets using particle filtering. 

This year we also proposed a fast implementation of the Chan-Vese active contour model 
that improves the computational speed and the robustness of the image processing. The 
computational speed of tracking using the fast implementation reaches 100 
frames/seconds in typical tracking scenes from several flight tests, Figure 7. 

Figure 7: Detecting and tracking with the new method. The two images on the left show 
detecting several windows. The two images on the right show tracking an aerial target in 

cloudy sky (computational speed: 100 frames/seconds). 
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Robust Tracking of Deforming Targets 

The investigators Yezzi and Soatto have incorporated feedback ideas from control and 
estimation theory into their prior framework of "deformotion" (a method to 
simultaneously track the motion and the deformation of the appearance of a moving and 
deforming object while distinguishing clearly between the two components of the 
changing shape). Prior to the beginning of this effort, the framework was used for the 
purpose of tracking only through the simple notion of a "moving average" via the 
simultaneous segmentation and registration of several consecutive frames of a video 
sequence rather than the traditional frame-by-frame approach typically used in active 
contour methodologies. The recent incorporation of a dynamical model for the 
deformation and the motion components of this framework by the investigators, thereby 
allowing the use of causal observers, has lead to tremendous increases in the robustness 
of the tracker to even severe temporary occlusions of the object being tracked. 

In Figure 8, we observe the contour tracking a person in a parking lot where there is a 
black vertical band of missing pixel data due to a malfunction of the digital camera. As 
the person passes through this vertical band, almost fully occluded at one point, the 
dynamical mode helps propagate the contour through the occlusion without wildly 
spilling or distorting or losing its lock by the time the person reappears on the other side 
of the bar. Also in Figure 8 we see even more severe occlusion taking place as a student 
walks behind a very large printer, becoming fully occluded for a number of frames. 

Figure 8: Tracking through occlusions by adding a dynamical model to the "deformotiof 
framework (top) behind missing pixel data (bottom) behind office equipment. 

Optical Flow 

In the second year of the program, we formulated a straightforward approach for 
predicting and estimating large-amplitude optical flows. The optical flow model 
underpinning the proposed algorithm incorporates temporal coherence, which is captured 
by an evolution equation to provide the optimal fusing of data from multiple frames of 
measurements.  It allows the formulation of the estimation problem as a state estimation 
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problem, which can be efficiently solved by Kalman filtering. Though such dynamic 
approaches for estimating optical flows have long been in use, our proposed approach is 
innovative in that it shows how to adapt both state and measurement models of the 
Kalman system in order to estimate large-amplitude optical flows, for which the 
linearized modeling (frequently referred to as the differential optical flow equation) is 
known to fail. It is done by modeling the optical flow as a composition of its predecessor 
(i.e., a time-delayed version) and a "complementary" optical flow. Consequently, the 
former is used to predict the current optical flow and to pre-warp the images to be 
"connected" using this prediction. After the pre-warping is completed, the resultant 
images are employed to form a measurement model for the "complementary" optical 
flow and, then to update the Kalman estimate. 

Variational Methods for Shape from Defocus: 

Our group has successfully tackled the problem of calibration in visual accommodation. 
Visual accommodation is the process of extracting three-dimensional information from 
images obtained by averaging different exposures obtained, for instance, under a 
changing focal length (shape from defocus) or a moving scene (shape from motion blur). 
While these problems are classical in computer vision and image analysis, all algorithms 
published so far required knowledge of the calibration parameters (aperture of the lens, 
focal lengths, exposure time etc.) in order to return a correct estimate. In practice, this is 
severely limiting since it requires pre-calibration of the imaging device following a 
complex protocol. In [Lu et al., 2007], we have characterized the set of all possible 
surfaces indistinguishable from deblurred images: They are simply parameterized by an 
affine transformation of the inverse depth, where the affine parameters are related to the 
calibration of the focal planes by simple algebraic relations. We have showed that the 
presence of at least one plane in the scene allows disambiguating the reconstruction, since 
planes are all and only the surfaces that are invariant under affine transformations of the 
inverse depth, finally, we have showed that even in cases where the correct 
reconstruction cannot be performed, one can still recover a deblurred version of the 
original data. 

Analysis of the Ambiguities in Motion Analysis: 

In [Vedaldi et al. 2007] we have proven a series of theorems that relate to the problem of 
reconstructing 3-D camera motion (ego-motion) from collections of images or optical 
flow. It is well known that ego-motion estimation can be posed as an optimization 
problem, one that is non-linear and non-convex, and that is subject to the presence of 
many local minima. It is also known that the shape of the L2 residual surface is littered 
with singularities, that pull the cost function and cause a large number of local minima in 
the forward direction, that is when the translation vector is aligned with the optical axis. 
This is arguably the most important case for AFOSR applications, and for the use of 
vision as a sensor for navigation in general. In this most recent work, we have proven a 
theorem that shows that if the inverse depth is bounded away from zero during the 
optimization of the L2 residual, singularities in the forward direction disappear, and the 
L2 residual is actually a smooth function.    This effectively replaces a non-smooth 
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unconstrained optimization with a smooth constrained one, and improves the results of 
motion estimation algorithms. 

Model Based Radiance Estimates for Segmentation 

Sometimes contrast between average foreground and average background intensities 
makes the segmentation task one of the easier aspects of the overall tracking algorithm. 
However, very few objects can be specified with nearly constant radiances that differ 
sharply in a scene with nearly constant background radiance. While more sophisticated 
radiance models have existed for a while (the classic one being the piecewise smooth 
model used in the Mumford-Shah functional), they have been computationally very 
expensive, making their utility limited. We explored methods to substantially reduce the 
computational complexity of more flexible radiance models, with two very promising 
leads that may make their applicability to visual tracking much more plausible. The first 
lead deals with a dimensionality reduction technique, based on training data, applied to 
both shape and radiance measurements accrued from prior images of related targets to be 
tracked. The second lead deals with an approximation of the class of piecewise smooth 
functions by basis functions generated by convolution of the input image with families of 
low-pass filters. We can see the power of these more flexible radiance models for 
tracking in Fig. 9 where we are trying to track a person's head. Notice that the face 
would be very poorly approximated by a simple constant or nearly constant radiance. 

Figure 9: Adding piece-wise smooth radiance to deformotion method to tracking objects 
with non-trivial albedos. (Top Row) Tracking results. (Bottom Row) Piecewise smooth 

radiance models used for the above tracking results (no edge detectors used). 
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Shape-Driven Observer Theory for Tracking: 

We have proposed a deterministic observer framework for visual tracking based on non- 
parametric implicit (level-set) curve descriptions [Niethammer, Vela, Tannenbaum, 
2008]. The observer is continuous-discrete, with continuous-time system dynamics and 
discrete-time measurements. Its state-space consists of an estimated curve position 
augmented by additional states (e.g., velocities) associated with every point on the 
estimated curve. Multiple simulation models are proposed for state prediction. 
Measurements are performed through standard static segmentation algorithms and 
optical-flow computations. Special emphasis is given to the geometric formulation of the 
overall dynamical system. The discrete-time measurements lead to the problem of 
geometric curve interpolation and the discrete-time filtering of quantities propagated 
along with the estimated curve. Interpolation and filtering are intimately linked to the 
correspondence problem between curves. Correspondences are established by a Laplace- 
equation approach. The proposed scheme is implemented completely implicitly (by 
Eulerian numerical solutions of transport equations) and thus naturally allows for 
topological changes and subpixel accuracy on the computational grid. 

Local Region-Based Segmentations: 

We developed a natural framework that allows any region-based segmentation energy to 
be re-formulated in a local way [Lankton, Tannenbaum 2008]. By considering local 
rather than global image statistics and evolving a contour based on local information, 
localized contours are capable of segmenting objects with heterogeneous feature profiles 
that would otherwise be difficult to capture correctly just using a standard global method. 
The technique is versatile enough to be used with any global region-based active contour 
energy and instill in it the benefits of localization. We have demonstrated the localization 
of three well-known energies in order to illustrate how our framework can be applied to 
any energy. The results we have obtained on challenging images to illustrate the robust 
and accurate segmentations that are possible with this new class of active contour models. 

Shape, Scale and Registration 

An important issue that needs to be addressed in image-based models is that of scale. 
Because targets can appear at any scale, depending on their position relative to the sensor, 
and yet resolution imposes a lower bound on detectable structures, algorithms have to 
operate at multiple scales of resolution. On the other hand, some objects are detectable 
only a certain scale, which defines the statistics that make it detectable (see images of a 
cheetah below). We have developed novel techniques to classify image regions based on 
automatic scale detection. We believe that this is a crucial step in texture analysis and 
will play an important role in perspective when complex camouflaged targets will 
become manageable in real-time fashion. 

Another important problem arises from the fact that often the object of interest (template) 
appears rather different from the actual target when embedded in real scenes. Therefore, 
standard cost criteria traditionally used in deformable templates often yield catastrophic 
failure in tracking and registration algorithms. Recently, there has been a resurgence of 
information-theoretic criteria for tracking, segmentation and registration,  driven in 
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particular by medical imaging applications where the benefit of multi-modal registration 
is immediately obvious. We have developed techniques to perform multi-modal 
registration of images affected by significant distortions in the multi-modal data 
collection process. For instance, in registering anatomical atlases to gene-expression data, 
one attempts to put in correspondence different objects that - without significant amount 
of prior knowledge at hand - appear to have little in common. The schemes we develop 
are "low-level, bottom-up" algorithms that do not require explicit domain knowledge, 
and are therefore portable to other domains [Yi-Soatto, 2008]. 

Estimation Problem for Moving Airborne Object Tracking 

We have developed airborne target tracking algorithms for use on UAVs equipped with 
monocular based imaging systems. The UAV is to track an object/target within its field 
of view, requiring an estimate of target relative position. Unfortunately, due to the 
camera projection equations, the recovery of range is an ill-posed problem for monocular 
imaging systems. To overcome this, several approaches have been investigated. 

The standard EKF for range estimation has traditionally been performed with knowledge 
of target bearing only, known as bearings-only range estimation. The algorithm estimates 
relative range, line-of-sight angle (LOS), and LOS rate using the visual information 
obtained from an on-board camera. Range is unobservable except during certain 
maneuvers, and Leader accelerations can cause an EKF to diverge. Fortunately, the 
image of the Leader provides indirect observation of the range through measurement of 
target size in the imaging plane. The size of the target is defined to be the longest axis of 
the plane (typically approximately the wing span). Measuring the angle subtended by the 
Leader in the image plane renders range observable. The EKF is augmented with an 
additional target-size state to utilize the subtended angle information. 

Guidance for Formation Flight 

The vision-based estimation filter in conjunction with active contours can be used to 
implement the tracking problem described above. To do so, range and line of sight 
estimates are compared to desired values and converted into control commands for the 
UAV. The control commands are obtained using standard guidance and pursuit laws. 
Referring to Figure 10, in this scenario, each UAV may follow several other vehicles, and 
may have more than one desired relative range and angle. However, the Leader-Follower 
guidance algorithm has only two parameters: desired relative range and desired relative 
angle. This leads one to average the desired ranges and desired relative angles for each 
UAV (similar to idea of averaging the pseudo-control in [ 17]). 
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Figure 10: 5-Ship formation 2D simulation (Left) planar trajectories (Right) range errors 

We have also explored guidance solutions that allow groups of unmanned vehicles to 
move in some coordinated fashion while avoiding fixed obstacles. When the target and 
obstacle size are assumed known, the range can be computed from the geometric 
relationship involving the subtended angle, object size and range. In this case, we have 
used an adaptive neural network (NN) to directly estimate the range-rate of the target 
from range and angular measurements of the LOS vector. The output of the NN is used 
in the guidance policy for pursuing the target. In the past year, we have also explored a 
more decentralized, leaderless formation scheme. In the latter scheme, each vehicle in 
the formation implements a guidance policy that is a blend of waypoint tracking, 
formation control and obstacle avoidance. The scheme increases flexibility of the 
formations by allowing transitions in the formation shape and reducing dependency on a 
single vehicle (leader), Figure 11. 
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Figure 11: Leaderless formation 
(Left) with obstacles (Right) transition to a line-formation 

The EKF can produce biased estimates of the range due to the unknown target 
acceleration. We have studied various ways of improving the estimator. One way is to 
construct an optimal guidance policy by minimizing the variance of the range estimation 
error in the EKF design. The guidance policy results in maneuvers perpendicular to the 
LOS vector. Another line of work has involved modeling the target acceleration as 
Gauss-Markov random processes.   While this helped in reducing the bias in the range 
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estimate, we cannot capture various target accelerations with a fixed model. A third line 
of research involves augmenting the EKF with an adaptive NN (EKF + NN) that 
produces an estimate of the unknown target acceleration. The NN trains on the residuals, 
i.e., the error between the image plane measurements and the EKF estimates of these 
measurements. A typical result is illustrated in Figure 12. 
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Figure 12: Range estimation results 
(Left) basic extended Kalman filter (Right) adding a neural network 

We have previously applied output feedback control with a linear reference model to the 
guidance problem. A linear reference model was designed for the relative motion. The 
linear output feedback controller was augmented with an adaptive element to compensate 
for matched uncertainties. A method has recently been explored for tracking control 
design using a nonlinear reference model. The relative motion of the system dynamics in 
the absence of uncertainties defines an open loop nonlinear reference model. The loop 
around the reference model is closed via backstepping technique, thus defining a 
nonlinear closed-loop reference model. The backstepping controller is augmented with 
an adaptive element and applied to the nonlinear dynamics of the relative motion. The 
error dynamics in its structure are similar to the previous work, but the unmatched 
uncertainty is different and is less in norm. The states of the relative motion including 
the relative range have also been estimated using the adaptive observer from [18]. 

Guidance for Obstacle Avoidance 

A Note on Obstacle Detection: For obstacle avoidance, it is sufficient to concentrate on 
detecting the edges of obstacles. When we restrict the obstacle and camera motion to a 
2D plane, each obstacle appears as a straight line in the camera image plane, and its edges 
are two endpoints of the line in the image. Those edges can be detected as discontinuities 
in the optical flow field. Therefore, it is assumed that optic flow is used to rapidly detect 
the endpoints of all obstacles. 

Estimating Time-to-Go (tgo) and Zero Effort Miss (ZEM) Distance:  An EKF was 

designed to estimate the relative position of each obstacle edge point with respect to the 
UAV from its image position measurement. However, in the case of moving obstacles, 
unmodeled dynamics due to the unknown obstacle motion (target acceleration) may 
produce biased estimates or even cause the EKF to diverge. The estimates are improved 
by augmenting the EKF with an adaptive NN that compensates for estimation errors due 
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to the unmodeled dynamics and other nonlinearities [Sattigeri, Calise, Evers 2003]. The 
estimates  of  tgoznd ZEM are  obtained  from the  estimates  of relative  position. 

Furthermore, estimates of the absolute positions of all obstacle edge points can be 
calculated by using the relative position estimates and known camera motion. 

Selecting the Most Critical Point: If an obstacle edge satisfies both tg0 < /min and 

ZEM < dmin, the UAV must maneuver to avoid the obstacle. The edge point which 

satisfies the conditions above and has the smallest tor%  is chosen as the most critical lgo 
point. 

Guidance Law for Obstacle Avoidance: A guidance law for obstacle avoidance was 
developed based on PN guidance. The vehicle has to avoid the most critical point while 
minimizing a deviation from the planned path. Therefore, a point of minimum separation 
from the most critical point is identified, and the vehicle is steered to that point using PN 
guidance. At the same time, a guidance command for tracking the planned path is 
created from the known vehicle motion. These two commands are blended with a 
weighting function to arrive at a net guidance command. The weighting function 
depends on tg0 so that obstacle avoidance is given greater priority as tg0 decreases. 

Figure 13 depicts a simulation result of vision-based obstacle avoidance using the 
algorithms described above. The nominal path is a straight line along Y=0. The vehicle 
has constant speed and is controlled by its turning rate. We are currently examining the 
effect of moving obstacles, and evaluating the potential benefit of augmenting the EKF 
with an adaptive element. 
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Figure 13: Vehicle Trajectory for Point Obstacles (left) and Line Obstacles (Right). 

A 2-D Fixed Object Tracking Method: An obstacle avoidance algorithm that utilizes 
information from a 2-D passive vision sensor was investigated. It is assumed that a path- 
planning algorithm provides a trajectory that an aircraft has to follow. However, there 
are unforeseen obstacles that must be negotiated along the path, requiring a deviation. 
An EKF was designed to estimate the relative position of each obstacle edge point with 
respect to the aircraft from its image position measurement. If an obstacle edge satisfies 
both a time to closest approach and zero-effort miss criteria, then the aircraft must 
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maneuver to avoid the obstacle. The edge point that satisfies the conditions above and 
has the smallest time to closest approach is chosen as the most critical point. The vehicle 
has to avoid the most critical point while minimizing a deviation from the planned path. 
Therefore, a point of minimum separation from the most critical point is identified, and 
the vehicle is steered to that point. A "minimum effort" guidance law has been 
developed in this last year, which has greatly improved vision-based obstacle avoidance 
metrics, figure 14. 
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Figure 14: Vehicle trajectory and commanded with and without minimum effort guidance 
to avoid obstacles (minimum effort solid lines, conventional PN guidance dashed); 

reduced peak acceleration required, and results in a smoother/safer trajectory 

Stochastically Optimized Guidance Design: It is well-known that vision-based estimation 
performance highly depends on the relative motion of the vehicle to the target. The 
stochastically optimized guidance design for vision-based control applications has been 
investigated [Watanabe et.al. 2006]. An extended Kalman filter (EKF) is applied to the 
relative state navigation. The guidance policy is derived by minimizing the expected 
value of a sum of guidance error and control effort subject to the EKF procedures. 
Furthermore, a one-step-ahead suboptimal optimization technique has been developed 
and implemented to avoid iterative computation. The approach is applied to vision-based 
target tracking and obstacle avoidance. Simulation results verified that the suggested 
guidance law significantly improves the estimation performance, and hence improves the 
overall guidance performance, Figure 15 [Watanabe et.al. 2007]. 
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Figure 15: (Left) Vehicle trajectories comparing suggested suboptimal guidance and 
conventional guidance for vision-based target tracking, terminal miss distance is 
significantly reduced; (Right) Estimation error converges to zero when using the 
suboptimal guidance (Conventional green dashed lines, Suboptimal solid blue) 

UKF and EMPF-based Visual Tracking Systems: We have developed an Unscented 
Kalman Filter (UKF) approach to the highly nonlinear vision-based estimation problem 
[Oh and Johnson 2007]. We have also explored particle filtering for this purpose. While 
particle filters have many attractive features including their applicability to general 
nonlinear, non-Gaussian problems without approximations of noise probability 
distributions, they also suffer from some defects. The most serious defect might be the 
increasing computational cost in high-dimensional state-space models because. One 
technique to surmount this problem without reducing the efficiency of sampling 
techniques is to reduce the dimension of the state space model by marginalizing out some 
of the state variable components. Since the vision-based tracking problem can only be 
completely described by a relatively high-dimensional state-space model, direct 
employment of the particle filtering on this problem is almost impossible because an 
enormous number of samples are required to properly approximate the posterior 
distributions. Hence, the idea of marginalization (or Rao-Blackwellization) is extended 
to solve this problem in the framework of an extended marginalized particle filter 
(EMPF). In this approach, while part of the state components are represented by 
nonlinear dynamics with Gaussian process noise, those state components can be 
effectively marginalized out by employing the UKF to deal with those state components. 
The idea utilizes the reasoning that the UKF can more accurately and effectively solve 
the nonlinear estimation problems with Gaussian noise characteristics compared to the 
EKF. Since vision sensor measurements can better be represented by the non-Gaussian 
noise characteristics and the vision information itself directly provides the position 
information only (and not directly but indirectly the velocity and acceleration information 
over the progression of time), only the position state components with measurements of 
vision information are solved in the particle filtering framework. The other state 
components represented by nonlinear equations with Gaussian noise are handled by the 
UKF, Figure 16. This approach can be easily extended to the design of a vision-based 
tracking system that incorporates probabilistic non-Gaussian vision information. 
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Figure 16: Target position estimation (left) and target velocity estimation (right) using 
the onboard image processing results obtained during flight testing on June 15, 2006. 
Image processing results are post-processed to get the vision-based relative motion 

estimation in the framework of the EMPF. GPS/TNS results are independently recorded 
from onboard integrated navigation systems during the flight test for comparison. 

Adaptive Estimation: Our previous contributions have included approaches to adaptive 
estimation, and this year the estimation design presented in [Sattigeri et.al. 2006] has 
been validated in the real-time Georgia Tech Unmanned Systems Testbed (GUST) 
simulation software, which is the final step before flight testing. In GUST the adaptive 
estimation design is integrated with image processing, guidance and control algorithms, 
allowing vision-in-the-loop formation flight to been demonstrated in a software-in-the- 
loop environment. Figure 17(a) shows the leader aircraft in the formation flight 
simulation. The leader aircraft is turning in a circle at a steady rate in the horizontal 
plane. Figure 17(a) is a screenshot of the frame-grabber window, which is used by the 
image processing to track the leader aircraft. The image processing returns the location 
of the center of the leader aircraft (green crosshair) and the wing-tips (red crosshairs) 
which are used to compute the LOS and subtended angles in the image plane. Figure 
17(b) shows the leader acceleration estimation performance of the adaptive neural 
network (NN) augmenting the nominal estimator. The nominal estimator is a linear, 
time-varying Kalman filter wherein the leader acceleration components along the inertial 
axes are modeled as independent zero-mean, white noise processes. The NN does a very 
good job of estimating the unmodeled leader acceleration. In the absence of adaptation, 
there is no compensation for the leader acceleration in the estimator design. This causes 
the leader aircraft to drift out of the field-of-view of the follower vision sensor and 
ultimately vision formation cannot be maintained in the absence of adaptation (not 
shown). Flight test results are expected in the near future, and may be presented at the 
meeting. 
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Figure 17: Formation Flight of adaptive estimator (a) Frame-Grabber window showing 

output of Image Processing (b) Leader Acceleration Estimation Performance with 
Adaptive NN (ft/s2) 

Adaptive Disturbance Rejection Controller for Visual Tracking 

An adaptive disturbance rejection control architecture is developed in [Stepanyan and 
Hovakimyan GNC 2005] for a flying vehicle to track a maneuvering target using a 
monocular camera as a visual sensor. The kinematic equations of relative motion are 
formulated in the body frame of the tracking vehicle, in which the target velocity is 
viewed as a time-varying disturbance that is assumed to be in the form of a constant term 
plus a time-varying term with bounded integral of the magnitude. This means that any 
maneuver made by the target is such that the velocity returns to some constant value in 
finite time or asymptotically in infinite time with a rate sufficient for the integral of the 
magnitude of velocity change be finite. For example, any obstacle or collision avoidance 
can be viewed as such a maneuver. The challenge associated with the unobservable 
relative range leads to a reference model, dependent upon the unknown constant 
parameter associated with the target size. In the meantime the problem is complicated 
with the presence of unknown time-varying disturbances associated with the unknown 
target's velocity. Thus two challenges are addressed simultaneously: tracking of a 
reference command that has an unknown parameter in it, and disturbance rejection 
problem for a multi-input multi-output system with positive but unknown high frequency 
gain in each control channel. The proposed guidance law uses the adaptive synthesis 
approach developed in [19] for rejecting the time-varying disturbances and, as a result, 
guarantees asymptotic tracking of estimated reference commands. 

Tracking of the true reference commands requires identification of the target's size, which 
otherwise requires convergence of the parameter estimates to the true value. This has 
been achieved by introducing intelligent excitation technique, [Cao and Hovakimyan 
ACC 2005]. Following this method, a sinusoid with amplitude depending on the tracking 
error is introduced in the estimated reference command. This ensures simultaneous 
parameter convergence and output regulation. 

Active-Vision Control Systems MURI Final Report 22 



The limitations imposed on the target motion can be removed by considering the visual 
tracking problem in output feedback framework that involves the target's acceleration, 
rather than the velocity. In this case, the acceleration is assumed to be piece-wise 
continuous and bounded, but otherwise with unknown bounds. The system in this 
general case is of vector relative degree, has in general time-varying unknown parameters 
associated with the target's geometry and bounded unknown disturbance associated with 
the target's acceleration. The reference model still depends on the unknown parameters, 
and perfect tracking can be achieved if the parameter estimates converge to the true 
values. 

To handle this problem, a robust adaptive observer design methodology was developed 
[Stepanyan and Hovakimyan CDC 2005] for a class of uncertain nonlinear systems in the 
presence of time varying unknown parameters and non-vanishing disturbances. Using 
universal approximation property of radial basis function neural networks and the 
adaptive bounding technique, the developed observer achieves asymptotic convergence 
of state estimation error to zero, while ensuring boundedness of parameter errors. 
However, the methodology requires existence of an output injection matrix that makes 
the linear part to be SPR-like. The latter condition is very challenging to ensure in visual 
tracking and requires input-output filtering and state transformations, like ones developed 
in [20] and [21]. 

LI Adaptive Estimation and Control: 

Given the visual measurement of the target and the relative altitude (such as by geo- 
referencing the image, captured by the onboard gimbaled camera, with a given database - 
such as for a ground-target), the estimation problem was formulated in a way such that 
the recently-developed Z,, fast estimator can be applied for the target's time-varying 
velocity estimation [Dobrokhodov et. al. 2007]. Arbitrary small estimation precision and 
transient response can be obtained by increasing the bandwidth of the low-pass filter used 
in the L, fast estimator. The trade-off is that increasing the bandwidth requires larger 
adaptation rate and faster computation. The performance bound from disturbance/noise 
in the measurements to the estimation error is systematically derived, which explicitly 
accounts for out-of-frame events following the analysis on brief instabilities. 

Closed-Loop Image Processing, Guidance, Navigation, and Control Simulation 

After achieving initial verification of the individual tracking algorithms on specially 
tailored simulations, we incorporated the components into a real-time simulation of two 
airplanes, including its guidance and control functions. The complete system, including 
image processing, estimation, and guidance have been implemented and tested in this 
way. A scene generator is used as the input to image processing approaches. A typical 
result is shown in Figure 18. 

Active-Vision Control Systems MURI Final Report 23 



umcMMxi 

Figure 18: Closed-loop vision-based formation flight high-fidelity simulation results 
(Left) Relative position command, estimated, and actual for changed in relative position 

command (Right) Raw image with segmentation results overlay 

The adaptive estimation design described above for vision based formation flight was 
been validated in the same real-time simulation [Sattigeri, Johnson, Calise and Ha 2007]. 
Here, the adaptive estimation design is integrated with image processing, guidance and 
control algorithms, allowing vision-in-the-loop formation flight to be demonstrated in a 
software-in-the-loop environment. Open-loop results with synthetic imagery and 
recorded flight test data were obtained first. Figure 19 shows results obtained by post- 
processing recorded flight test data, specifically leader velocity and position estimation 
performance with the adaptive estimator. 
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Figure 19. Leader Position Estimation Performance (ft), with Adaptive Estimation 
- (Left) Velocity North, East, Down (Right) Position North, East, Down, 

leader flies in a circle 

An adaptive integrated guidance and control design developed for line-of-sight formation 
flight was also integrated and tested in the simulation [Sattigeri, Johnson, Calise 2008]. 
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Adaptive Vision-Based Guidance Law with Guaranteed Performance Bounds for 
Tracking a Ground Target with Time- Varying Velocity 

This work extends early results on vision-based tracking of a ground vehicle moving with 
unknown time-varying velocity. The follower UAV is equipped with a single camera. 
The control objective is to regulate the 2D horizontal range between the UAV and the 
target to a constant. Figure 20 shows graphical illustration of the vision-based target 
tracking scenario. Let p(t) denote the 2D horizontal range between the UAV and the 

target. The control objective is to regulate p(t) topd, where pd is a given desired 2D 

horizontal range between the UAV and the target. For simplicity, we consider the case 
when   pd   is  constant.     For  this  system,  the  available  measurements  are  visual 

measurements of the target location within a 2D image, relative altitude by comparison to 
terrain database, and ownship state. 

x     X. 

Target 

Figure 20: Relative kinematics of UAV-target motion. 

The extension has two distinct features [Ma, et. al. GNC 2008]. An earlier developed 
guidance law used the estimates of the target's velocity obtained from a fast estimation 
scheme. We explicitly derive the tracking performance bound as a function of the 
estimation error. The performance bounds imply that the signals of the closed-loop 
adaptive system remain close to the corresponding signals of a bounded closed-loop 
reference system both in transient and steady-state. The reference system is introduced 
solely for the purpose of analysis. This work also analyzes the stability and the 
performance degradation of the closed-loop adaptive system in the presence of out-of- 
frame events, when continuous extraction of the target's information is not feasible due to 
failures in the image processing module. The feedback loop is then closed using the 
frozen estimates. The out-of-frame events are modeled as brief instabilities. A sufficient 
condition for the switching signal is derived that guarantees graceful degradation of 
performance during target loss. The results build upon the earlier developed fast 
estimation scheme of the target's velocity, the inverse-kinematics-based guidance law and 
insights from switching systems theory. 
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Flight Testing and Sensor Development 

Flight Testing 

A helicopter UAV with automated capabilities that include: searching a prescribed area, 
identifying a specific building within that area based on a small sign located on one wall, 
and then identifying an opening into that building was developed and tested. Results 
include successful evaluation at the McKenna Military Operations in Urban Terrain flight 
test site. Active contours were used to locate openings, Figure 21. In a separate/related 
activity, the contours such as those in the figure were successfully used to update an 
inertial navigation solution, allowing the vehicle to operate without GPS or other aiding 
for extended periods [Proctor, et. al. 2003]. 

****TJ 

Figure 21: Flight test results segmenting openings into a building 

A glider, which is capable of flying from a starting point to a pre-defined ending location 
using only a single vision sensor, has been flight tested [Proctor, et. al, 2006]. The 
estimator uses an EKF. The algorithms are tested with a glider instrumented only with a 
single camera. 

We validated the vision-based segmentation, estimation, guidance, and control strategy 
developed previously in flight test. On June 15, 2006, the project had a particularly 
significant highlight. One of our research aircraft held formation for an extended period 
with another aircraft, utilizing a vision sensor as its only indication of the state of the 
other aircraft. The Leader aircraft was a 1/3 scale Edge 540T with a GPS/INS based 
autopilot, flying in a large circular pattern over our test range at slow speed. The 
Follower aircraft was the GTMax (based on the Yamaha RMAX) research helicopter, 
utilizing onboard image processing, lead aircraft state estimation, guidance, and control. 
On engagement, the follower held formation for approximately two full "orbits" of the 
test range in a shallow turn - encountering a variety of lighting and wind/gust conditions. 
This may have been the first time automated formation flight based on vision has been 
done. Segmentation and estimation data are shown below in Figures 22 and 23. 
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Figure 22: Typical segmentation of the image (reproduced from recorded video from the 
flight). Lead aircraft center and wing tip positions are found in realtime (graphically 

shown with a "+"), and this data utilized to estimate the position, velocity, acceleration, 
and size of the Leader. The estimated position, velocity, and acceleration are utilized to 

fly formation. 
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Figure 23: Position estimation (left) and position estimation error (right) during one of 
the flights on June 15, 2006, comparing onboard vision-based estimate of Leader location 

with Leader's reported location (GPS/INS solution). For part of two cycles of the 
circular motion, the Follower is utilizing the vision-based estimate to maintain formation 
and ignoring the reported GPS/INS solution, (coordinates are North/East/Down in ft. IP 

= vision based, GPS = GPS/INS solution) 

This test result involved some of the simplest of the approaches developed under this 
project. In the final two years of the project, we anticipate greatly enhanced performance 
as we incorporate these more advanced methods. 

Subsequently, we continued to validate the vision-based segmentation, estimation, 
guidance, and control strategies developed previously in flight testing. Another 
significant activity was bringing on-line a second airplane, which we call the GTYak, a 
33% scale Yak aerobatic airplane, Figure 24. This has enabled us to switch to two- 
airplane tests with two airplanes with similar performance capabilities. The first 
formation flight with this aircraft was in February 2007. The first closed-loop vision- 
based tests were performed in July 2007. 
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Figure 24: (right) GTYak vision-based tracking tested. Camera is located in pod on right 
wing. Image processing and estimation computer is in canopy area, (left) GYak flying in 

formation with GTEdge "target'V'leader" airplane reported on previously. 

Sensor Design 

Another objective of this effort is the development of innovative optical imaging systems 
for 3D imaging of ground and airborne targets from autonomous vehicles. Our approach 
is to use a new type of optical elements, called "volume holographic lenses," (VHLs) 
which perform "optical slicing" on reflective objects (such as tanks and trucks, for 
example.) Optical slicing means that, when the instrument is focused on a certain plane, 
only the portion of the target that intersects the same plane is visible; the remainder is 
dark. By combining several focal planes, the entire 3D target shape is reconstructed. The 
benefits of this approach are that it does not require multiple views nor structured 
illumination, and it is not subject to ambiguities such as the "correspondence problem" in 
computer vision. On the other hand, the VHL method forms images "one line at a time," 
and so it requires 2D scanning to recover the 3D target in its entirety. The flight path of 
the autonomous vehicle itself can be used to implement the required scanning. 

During the first year we developed two significant improvements on the operation of 
VHLs, namely (i) a super-resolution method, based on the Viterbi algorithm, which 
improves the depth resolution of the VHL by a factor of 5, and thus permits the 
instrument to see features of the target which are finer than diffraction theory would have 
predicted; and (ii) a method to reduce scanning from 2D to ID, based on the dispersion 
properties of VHLs, which permits the instrument to acquire 3D images much faster than 
we had planned for originally. 

Second year accomplishments were focused on a new use of Viterbi which combines the 
increased resolution and denoising properties with reduction in scanning time; and a new 
method for acquiring hyper-spectral images (spatial as well as "true" - non-RGB - color 
information) with passive (sunlight) illumination. 

We have previously demonstrated the use of the Viterbi algorithm for improving the 
quality of volume holographic images; namely, reducing the effects of noise in post- 
processing when the desired depth resolution is finer than the instrument's classical 
resolution. However, in the version implemented in our prior research the required 
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number of scanned depths was equal to the number of desired reconstruction depths. We 
have succeeded in implementing a new version where the number of scan depths can be 
smaller than the number of reconstructed depths by a factor of approximately 4 (even 
better is achievable assuming low noise conditions). Thus, the Viterbi algorithm can be 
thought of as performing a kind of interpolation in this case. Further reduction in 
scanning is achieved using the multiplexing technique for volume holograms; namely, 
one combines two or more volume holographic lenses in a single optical element, so that 
the lenses image simultaneously separate depths in the target space. The images are 
separated easily because the multiplexed holograms are capable of directing each image 
onto a separate area of the digital camera (or to separate cameras.) The goal of the 
experiment, experimental arrangement, and typical results are summarized in Figure 25. 
This research was carried out in collaboration with Prof. Mark A. Neifeld of the 
University of Arizona. 

volume holographic 
multiplex lens 

(C) (a) (b) 
Figure 25 (a) Scanning profilometry with Viterbi interpolation. The thick black line 

denotes the cross-section of the (reflective) target surface; normally, one would need to 
scan so as to acquire a separate image for each column of voxels. Yet using the Viterbi 
algorithm it is possible to acquire only two images, at the voxel columns denoted with 
dotted red lines, and reconstruct the rest of the target based on these two depth scans 

only, (b) Experimental arrangement: slices #1 and #2 correspond to the red dotted lines of 
Figure MIT-1 (a), and are being imaged by the volume holographic multiplex lens onto 
separate positions on the camera, as denoted by the green arrows; thus the two required 
images are acquired in a single step in this experiment, (c) Reconstruction of a LEGO® 

object using the experimental setup of Figure MIT-1(b). 8 depth levels were 
reconstructed in one shot in this experiment. The depth resolution was 1.6mm and the 

working distance was 0.5m. 

We originally reported a novel "rainbow" volume holographic imaging technique, where 
the target is illuminated by a rainbow, which can be thought of as a multitude of colored 
slits imaged on the target. The volume holographic imager is capable of performing 
optical slicing, i.e. acquiring slice-wise depth information from each slit of different color 
in parallel. Subsequent to this, we succeeded in improving this technique by a 
modification which allows us to (a) utilize passive illumination, e.g. sunlight, and still 
recover slice-wise depth information; and (b) estimate the color composition of the target 
as well as its spatial shape in the same step (whereas the original rainbow technique 
required a color scanning step for non-white targets). Due to its passive nature, we refer 
to the new technique as "Sun Light" volume holographic imaging.   The experimental 
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arrangement of the Sun Light method, and typical experimental results obtained with a 
home-made reflective target, are summarized in Figure 26. 

CCD camera 
Grating 

Tilted, flat object 
Spectral plane 

(a) 

y ^Hf            acouncy^L^    1 

(b) 

Figure 26: The Sun Light volume holographic imaging method, (a) Experimental 
arrangement showing (for simplicity) a flat, tilted, reflective target at the input plane. The 

white-light (Sun Light) illumination is first spectrally analyzed by an auxiliary grating 
and then forwarded to the volume holographic lens, which completes one rotation to fill 
out the lateral field of view, as shown, (b) Experimental results, clockwise from bottom 

left: resconstruction of the tilted target profile, indicating the accuracy of the 
measurement (better than 20um); and depth-selective images of three (arbitrarily chosen) 

spectral components: cyan, light green, and orange-red. 
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AFRL Point of Contact and Interactions 

Primary AFRL point of contact was Johnny Evers, AFRL/MNGN, Eglin AFB, FL, 850- 
882-2961x2347. 

We have had technical interactions with AFRL/MNGN and AFRL/VACA regarding 
flight tests for unmanned aerial vehicles with vision-based guidance policies. One area of 
interaction involved improving the nominal autopilot design by making it adaptive. 
Calise, Tannenbaum, Hovakimyan, Betser, and Vela had extended visits to support 
related activities. Weekly teleconferences August-December 2004 and other reports were 
written related to adaptive autopilot design, adaptive guidance and integration of an IMU 
with GPS measurements. An adaptive autopilot was auto-coded from Simulink and 
integrated at Eglin by Ali Kutay, a GRA working under the direction of Prof. Calise. 
Stephen Card, a Georgia Tech student who spends summers working at AFRL/MNGN on 
these activities, also worked on these projects during the academic year while at Georgia 
Tech. 

We collaborated with Dr. J.V.R. Prasad at Georgia Tech and Sikorsky on a project to 
implement adaptive guidance laws for unmanned helicopter formation flight with ground 
and aerial targets. The adaptive guidance laws were flight tested using the Georgia Tech 
rotorcraft UAV GTMAX while maintaining range from a ground target. The designs and 
software were transitioned to Sikorsky for integration into a high fidelity simulator. 

A number of technical conferences were attended by members of the team, several also 
by AFRL, including CDC, ACC, GNC, ECCV, CLEO/IQEC, SPIE, and others. A special 
sessions relating to this project have taken place for the 2004 CDC and the 2005 ACC. 
One is planned for the 2005 GNC. 
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